

Advances in GNSS Technology and how they relate to Quarries

QuarryNZ 2024 Conference The Future is Digital: Navigating Shifts in Technology July 2024 Rodney Pilbrow B.E. (Mining) First Class Honours Member NZ Institute of Quarrying S & S NZ Certified Professional Engineering Surveyor Associate Member Survey & Spatial NZ Director Pilbrow Surveying Limited

Advances in GNSS Technology and how they relate to Quarries

Surveying Impact
Historical Development
Operational Insights
Future Quarry Operations

QuarryNZ 2024 Conference The Future is Digital: Navigating Shifts in Technology July 2024 Rodney Pilbrow B.E. (Mining) First Class Honours Member NZ Institute of Quarrying S & S NZ Certified Professional Engineering Surveyor Associate Member Survey & Spatial NZ Director Pilbrow Surveying Limited

TCEH The Construction Exchange Hub

O TCEH

The Construction Exchange Hub

0 010

Global Positioning System United States Air Force

Global'naya Navigatsionnaya Sputnikovaya Sistema Russion Federation

Galileo European Union Agency for the Space Programme

BeiDou Navigation Satellite System China National Space Administration

*not including 20 geostationary satellites

1940

1940

PILBROW SURVEYING LIMITED Specialists in Construction Surveying

Measured distance = signal travel time x speed of light

GNSS How it Works Trilateration

GNS5 How it Works Trilateration

GNSS How it Works Trilateration

Error Sources

	ING MAAGEENU	NES NIS STATISTICS	
CONT	BBIB TIM ANT CALL BBIB CONTENING ANT CALL CONTENING Source	Error Range	215
ts	Satellite clocks	±2 m	10
2 Clocks	Orbit errors	±2.5 m	AR0
HE GER	lonospheric delays	±5 m	1.2 4.35
201	Tropospheric delays	±0.5 m	1.5 0.35
and and	Receiver noise	±0.3 m	4.5 0.35
	Multipath	±1 m	1.5 2.35 +1 1.m

Receiver Not Roceiver Not Roceiver Multipach

A MAAGEENU	NE WITCHITCH
BIBTIHO AST CESS	*2.3 m *2.3 m
Contributing Source	Error Range
Satellite c loc ks	±2 m
Orbit errors	±2.5 m
lonospheric delays	±5 m
Tropospheric delays	±0.5 m
Receiver noise	±0.3 m
Multipath	±1 m

Satellite clocks

- Accurate to ±5 parts in 100,000,000
- 10 nanoseconds of time error is 3m of position error
- Monitored by GNSS Ground Control Segment
- Provides estimate of clock offset

DIRTIRG MAAGEENU	ALLS ATTACHER	
Contributing Source	Error Range	10/01/1
Satellite c loc ks	±2 m	
Orbit errors	±2.5 m	1
lonospheric delays	±5 m	ł
Tropospheric delays	±0.5 m	ł
Receiver noise	±0.3 m	-
Multipath	±1 m	

Orbit errors

- Medium earth orbit highly stable and predictable
- * Gravitational effects
- Pressure of solar radiation
- Monitored by GNSS Ground Control Segment
- Corrections made when needed

	LAAGEENU	NES NI ^{TE}	
ONT	BEIETING MIS CES 25 MAIN	*2.3 m 5	7
	Contributing Source	Error Range	2.5
	Satellite clocks	±2 m	23
A CONTRACTOR	Orbit errors	±2.5 m	A
D Z A BY	lonospheric delays	±5 m	1.2 4
	Tropospheric delays	±0.5 m	1.5 0
	Receiver noise	±0.3 m	1.5 0. 1.5 0.
	Multipath	±1 m	1.5 2.

Ionospheric delays

- Atmosphere between 80km and 600km above the earth
- Ions delay satellite signals
- Varies with solar activity, time of year, season, time of day, and location
- Delay varies with different radio frequency
- Tracking more than one frequency allows for correction

TIRG MAAGEEN	MES CONTE DESTACTOR	
Contributing Source	Error Range	255
Satellite clocks	±2 m	5
Orbit errors	±2.5 m	
lonospheric delays	±5 m	1.2
Tropospheric delays	±0.5 m	1.5
Receiver noise	±0.3 m	4.5
Multipath	±1 m	1.5

Tropospheric delays

- Atmosphere closest to the earth's surface
- Varies with humidity, temperature, atmospheric pressure
- Conditions are similar within a local area
- Allows RTK systems to compensate for delay

C MAAGEENU	MES ALIS WALL WITS
Contributing Source	Error Range
Satellite c loc ks	±2 m
Orbit errors	±2.5 m
lonospheric delays	±5 m
Tropospheric delays	±0.5 m
Receiver noise	±0.3 m
Multipath	±1 m

Noise

Receiver noise

- Position error caused by GNSS
 - receiver hardware and software
- High end GNSS less noise
- Low cost GNSS more noise

MAAGEENU	MES ANS
BIBTIRG MAN CS. 5 23 WAS	*2.31 m .5
Contributing Source	Error Range
Satellite clocks	±2 m
Orbit errors	±2.5 m
lonospheric delays	±5 m
Tropospheric delays	±0.5 m
Receiver noise	±0.3 m
Multipath	±1 m

Multipath

- Occurs when GNSS signal is reflected off an object
- Highwalls, structures, buildings, trees can cause multipath
- Reflected signal delayed causing incorrect position calculation
- Reduce multipath by keeping antenna away from deflecting surfaces

GNSS How it Works Making it more Accurate

 Code Based Positioning

 * Uses pseudorandom codes

 * 1m to 10 m accuracy

Carrier Based Ranging
Real Time Kinetic (RTK)
1cm to 3 cm accuracy

GNSS How it Works Single Base RTK

Base Station

- Location accurately known
- * Receives GNSS signals
- Determines range errors
- Transmits corrections

GNSS Satellite * Sends GNSS signals

Rover Receives GNSS signals

- * Receives corrections
- * Applies corrections

•

Determines position

GNSS How it Works Network RTK

Single Base RTK: Hz 8 mm + 1 ppm/ V 15 mm + 1 ppmNetwork RTK:Hz 8mm + 0.5 ppm / V 15 mm + 0.5 ppm

Single Base RTK: Hz 8 mm + 1 ppm/ V 15 mm + 1 ppmNetwork RTK:Hz 8mm + 0.5 ppm / V 15 mm + 0.5 ppm

Error at 1km Single Base RTK: Hz 9 mm / V 16 mm Network RTK: Hz 8.5mm / V 15.5 mm

Single Base RTK: Hz 8 mm + 1 ppm/ V 15 mm + 1 ppmNetwork RTK:Hz 8mm + 0.5 ppm / V 15 mm + 0.5 ppm

Error at 10km Single Base RTK: Hz 18 mm / V 25 mm Network RTK: Hz 13mm / V 20 mm

Single Base RTK: Hz 8 mm + 1 ppm/ V 15 mm + 1 ppmNetwork RTK:Hz 8mm + 0.5 ppm / V 15 mm + 0.5 ppm

Error at 30km Single Base RTK: Hz 38 mm / V 45 mm Network RTK: Hz 23mm / V 30 mm

Single Base RTK: Hz 8 mm + 1 ppm/ V 15 mm + 1 ppmNetwork RTK:Hz 8mm + 0.5 ppm / V 15 mm + 0.5 ppm

Error at 30km Single Base RTK: Hz 38 mm / V 45 mm Network RTK: Hz 23mm / V 30 mm

80mm +17mm -17mm :32 08:42:12 08:40:52 08:36:5 08:38:1 08:35: 08:39 2023 m 202 202 202 202 202 80 08/ 08/ 08 08 08 02/ 02/ 02/ 02/ 02/ 02

Network RTK: Error at 17km Hz 17mm V 23 mm

GNSS How it Works Dilution of Precision (DoP)

GNSS How it Works Dilution of Precision (DoP)

GNSS How it Works Dilution of Precision (DoP)

DOP value	Rating	Description
<1	Ideal	Highest possible confidence level to be used for applications demanding the highest possible precision at all times.
1–2	Excellent	At this confidence level, positional measurements are considered accurate enough to meet all but the most sensitive applications.
2–5	Good	Represents a level that marks the minimum appropriate for making accurate decisions. Positional measurements could be used to make reliable in-route navigation suggestions to the user.
5–10	Moderate	Positional measurements could be used for calculations, but the fix quality could still be improved. A more open view of the sky is recommended.
10–20	Fair	Represents a low confidence level. Positional measurements should be discarded or used only to indicate a very rough estimate of the current location.
>20	Poor	At this level, measurements should be discarded.

Reduces signal acquisition time

Improved spatial distribution improves DoP

Reduces problems caused by obstructions

Deep Pits can still have problems

Consumer Grade GNSS

- Smartphone navigation
- Location-based search results

Survey Grade RTK GNSS

- * Topographical surveys
- * Geotechnical locations
- Setout of works
- Ground control points
- * As built service locations

Drilling Rigs

- Fitted with GNSS
- Accurate location of drill holes
- Improved fragmentation
- Accurate heights better benches

Diggers

- Fitted with GNSS
- Loaded with the design model
- Quicker and more accurate
- Reduced mistakes and rework
- Reduces operating cost

Real-time Vehicle tracking

- Gather data about vehicle movements
- * Optimise operation
- Improve planning
- Inform decision making
- Track material for quality control and reporting

Real-time Vehicle tracking

- * Assess compliance to procedures
- Manage fuel use and tyre wear
- Track servicing schedules
- Improve safety
- Improve security

The Quarry of the Future

- Centralised Control Centre
- Fully autonomous machinery
- Automatic drone surveys
- GNSS reliant
- Highly efficient
- Precisely to design
- Unmatched safety
- * Volumetric analysis

Quarrying in the Future The Quarry of the Future

The Quarry of the Future

- Centralised Control Centre
- Fully autonomous machinery
- Automatic drone surveys
- GNSS reliant
- Highly efficient
- Precisely to design
- Unmatched safety
- Volumetric analysis

The Quarry of the Future

- Centralised Control Centre
- Fully autonomous machinery
- Automatic drone surveys
- **GNSS** reliant
- Highly efficient
- Precisely to design
- Unmatched safety
- Volumetric analysis

Quarrying in the Future The Quarry Worker of the Future?

Quarrying in the Future The Quarry Worker of the Future?

GNSS pivotal to Navigating Shifts in Technology

GNSS pivotal to Navigating Shifts in Technology

