

Quarry Waste What can you do with it ?

Two sites, two different methods

Blackhead Quarry – Dunedin

FlatTop Quarry – Auckland

Some of the challenges

- Environmentally sensitive areas
 - Extremally fine particle product with high concentrate of water
- High traffic areas Limited access
- Limited time to set up and pack down
- Vertical height from slurry ponds to discharge point

Blackhead Quarry

What they had traditionally done?

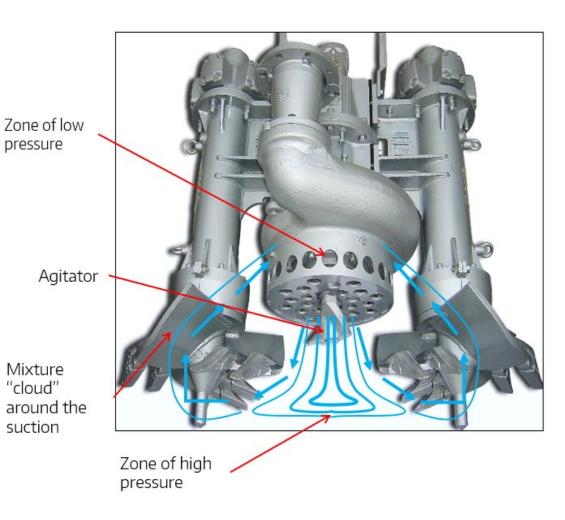
- Diggers and trucks
- Vacuum trucks!
- Digging it out into drying ponds and then carting away after a few weeks
- Which is a very inefficient and an expensive way of shifting liquid
- Tipsite dealing with it , sloppy messy product



Blackhead Quarry Environmentally Sensitive

- Very public Beach/surfer carpark right beside
- Any spillage would go straight into the sea
- Cutting main access off with pipeline
- All of sites rainfall runs through the ponds

The Pump – Dragflow HY85



How it works

The agitator not only prevents solids from blocking the pump inlet by mixing them with the liquid, but with its rotation with pump shaft it creates a downward flow that generates a high-pressure area in front of the pump. That puts the settled material in suspension creating a cloud of slurry around the pump suction.

Above the agitator, inside the strainer, a low-pressure area is created. This, together with the action of the impeller, makes it possible to pump a high concentration of solids.

The side cutters run at low rpm. At every rotation they bring additional material to the suction.

Dragflow Jetring

Dredging equipment – types

Amphibious digger, boom mounted

Remotely operated dredge, cable mounted

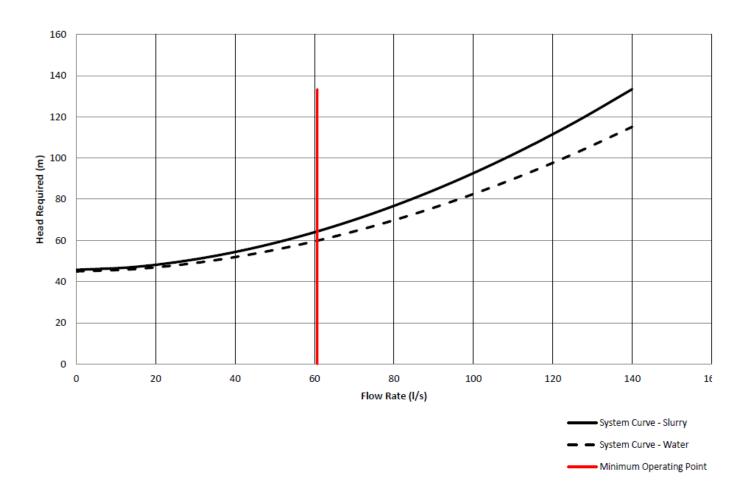
Manned dredge, cable mounted

Manned dredge, boom mounted

The Workings

Client Pipe System Input Data				
Pipe Section		UnderWater	AboveWater	
Length	(m)	3	550	
Static Head	(m)	3	45	

Pipe ID	(mm)	175.8
Pipe Roughness	(Constant, K)	0.0015
ΣFriction Co-efficients		4.20
Water Temp	(°C)	20.0
Desired Flow Rate	(I/s)	70.0
Minimum Mean Fluid Velocity	(m/s)	2.50
S.G. (Sm) of Slurry		1.25
Dry S.G. of Solid		2.00
Head Ratio (HR)		1.25


60.7 L/s minimum through the designated pipe

Water Temp	(°C)	20

Client Pipe System Output Data				7
Flow Rate tested	Mean Fluid Velocity Water (TDH)		Slurry (TDH)	
(I/s)	(m/s)	(m)	(m)	
0	0.00	45.0	45.8]
14	0.58	46.0	47.0]
28	1.15	48.6	50.3]
42	1.73	52.6	55.2	1
56	2.31	57.9	61.8]
70	2.88	64.4	70.0	U
84	3.46	72.2	79.7	
98	4.04	81.2	90.9]
112	4.61	91.3	103.6]
126	5.19	102.6	117.8]
140	5.77	115.1	133.4	

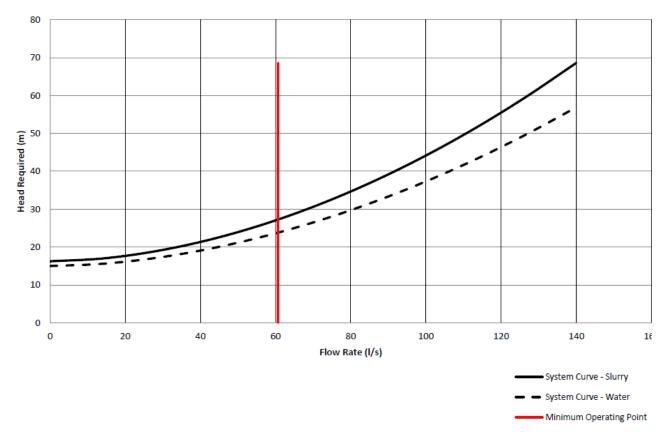
Use this Point onwards.

System Curve and Operating Point

Workings continued

Client Pipe System Input Data			
Pipe Section UnderWater AboveW			
Length	(m)	5	300
Static Head (m)		5	15

Pipe ID	(mm)	175.8	
Pipe Roughness	(Constant, K)	0.0015	
ΣFriction Co-efficients		4.20	
Water Temp	(°C)	20.0	
Desired Flow Rate	(I/s)	70.0	
Minimum Mean Fluid	(m /s)	2.50	
Velocity	(m/s)	2.50	
S.G. (Sm) of Slurry		1.25	
Dry S.G. of Solid		2.00	
Head Ratio (HR)		1.25	


Implies

60.7 L/s minimum through the designated pipe

Water Temp	(°C)	20

Clie	ent Pipe System	Output Data		I
Flow Rate	Mean Fluid	Water (TDH)	Slurry	Ī
tested	Velocity		(TDH)	
(I/s)	(m/s)	(m)	(m)	
0	0.00	15.0	16.3	
14	0.58	15.6	17.0	
28	1.15	17.1	18.9	
42	1.73	19.5	21.8	
56	2.31	22.6	25.8	
70	2.88	26.5	30.6	Use this Point onwards.
84	3.46	31.1	36.4	
98	4.04	36.5	43.1	Ī
112	4.61	42.6	50.7	
126	5.19	49.4	59.2	
140	5.77	56.9	68.6	I

System Curve and Operating Point

The Pipeline

Clip together HDPE

Fast establishment / disestablishment – 1 day to set up, 1 day to pack down

The Discharge Point

Winstones Flat Top

The Issue

Silt pond completely full, with no settling capacity left – Winter was coming!

Winstones Flat Top

What they had tried to do?

- Diggers and trucks
- Large geo bags
- Lamella settling tanks plus smaller geo bags
- Lime/ Crystals

The Pump

Wangen KL50

Discharge Point – Murrays Pond

- Filter bed with clean stone
- An outlet pipe
- Filter cloth on top
- This enables quick drying times

Still work in progress

