Flushing Chip Seals

The Aggregate Contribution

New Zealand Government

Road Safety

- The development of a transport system where no-one is killed or seriously injured is a strategic priority
- Waka Kotahi is committed to road safety

The Issue with Flushed Road Surfacings

- Pavement skid resistance is an essential contributor to safety.
- Skid resistance is a function of:
 - The aggregate state of polish (microtexture), and
 - The texture (macrotexture) of the surfacing
- Minimum texture specified by NZTA T10
- Average texture across the State Highway network is declining

Table 3 Minimum macrotexture requirements

Minimum macrotexture – mean profile depth (MPD mm)							
Permanent speed limit	Chipseal		Asphaltic concrete, ESC ≥ 0.4		Asphaltic concrete, ESC < 0.4		
	ILM	TLM	ILM	TLM	ILM	TLM	
50km/h and less	1.0	0.7	0.4	0.3	0.5	0.5	
Less than or equal to 70km/h but >50km/h	1.0	0.7	0.4	0.3	0.7	0.5	
Greater than 70km/h	1.0	0.7	0.9	0.7	0.9	0.7	

The Issue with Flushed Road Surfacings

- Pavement skid resistance is an essential contributor to safety
- Skid resistance is a function of:
 - The aggregate state of polish (microtexture), and
 - The texture (macrotexture) of the surfacing
- Minimum texture specified by NZTA T10:
 - The texture minimises the progressive loss of skid resistance with increasing speed on wet roads, and;
 - Texture prevents or minimises the loss of skid resistance due to contact between vehicle tyres and bitumen primarily for chip seal surfacings.
- Flushing can be difficult and expensive to remedy. Prevention is better than cure in this instance.

Mechanisms that Cause Flushing

- Excess binder application
- Embedment of the sealing chip into the basecourse or substrate
- Low binder viscosity
- Chip reorientation and compaction of the seal layers
- Water induced migration of the bitumen to the surface
- Thermal expansion of the binder, and finally
- Abrasion of the seal aggregate to produce fines that increase the volume of the bitumen mastic and reduce the size of the sealing chip.

Aggregate Abrasion

- Traffic-induced stresses can cause aggregate breakdown, especially in the presence of water
- Aggregate durability specified in M06 specification, using:
 - The Crushing Resistance test;
 - The Weathering Quality Index test, and
 - The Weak Particles test.

NZTA M06

Table 1: Source Property Sample Size Testing Requirements

Source Property Test	Fraction Size Range	Mass of Aggregate	
	(mm)	Required (kg)	
Polished Stone Value	10.0 – 7.2 Flake Sorting Sieve	20	
Crushing Resistance	13.2 - 9.5	10	
Weathering Quality Index	19.0 - 9.5	5	
weathering Quanty index	9.5 - 4.75	6	

4.2 Crushing Resistance

When naturally occurring aggregates are tested in accordance with NZS 4407 Test 3.10 - The Crushing Resistance of Coarse Aggregate Under a Specified Load, a maximum of 10% fines shall be produced under a load of 230kN.

When GMA is tested in accordance with NZS 4407 Test 3.10 - The Crushing Resistance of Coarse Aggregate Under a Specified Load, a maximum of 13% fines shall be produced under a load of 230kN.

4.3 Weathering Resistance

Sealing chip shall have a quality index of AA or BA when tested in accordance with NZS 4407 Test 3.11 - The Weathering Quality Index of Coarse Aggregate.

4.4 Weak Particles Test

The Weak Particles test is only required if source properties are disputed. When testing is required and carried out, sealing chip shall have a maximum of 1% of unsound materials when tested in accordance with AS 1141.32 - The Weak Particles Test.

Aggregate Abrasion

- Traffic-induced stresses can cause aggregate breakdown, especially in the presence of water
- Aggregate durability specified in M06 specification, using:
 - The Crushing Resistance test;
 - The Weathering Quality Index test, and
 - The Weak Particles test.
- None of these tests fully examine the effect of abrasion on the aggregate.

Research

- Waka Kotahi has undertaken research into aggregate abrasion and determined that:
 - Aggregate breakdown contributes to flushing by reducing the size of the sealing chip, and;
 - Fines derived from aggregate breakdown fill the available void volume by bulking up the bitumen mastic, leading to flushing.
- This research documented in Research report 576, located at <u>https://www.nzta.govt.nz/resources/research/reports/576/</u>
- Petrographic examination of the fines in the flushed binder showed they were derived from the sealing chip aggregate.

Aggregate Breakdown in Service: Before

Aggregate Breakdown in Service: After

Quantifying Aggregate Abrasion Resistance

- Test methods used to assess abrasion resistance include:
 - Los Angeles Abrasion test
 - Micro-Deval test
 - Nordic Mill test
 - ORMD "modified micro-Deval" test.
- Of all of these, the ORMD test differentiates between different aggregates
- The ORMD test reproduces the fines grading curves found in flushed field sites
- ORMD may provide a tool to quantify aggregate abrasion resistance.

Where to from here?

- Finalise and publish the ORMD test
- Collect more data on NZ chip aggregates
- Construct trial sections at CAPTIF and calibrate the test
- Engage with industry to agree on implementation, as a "report only" criterion
- Work towards setting abrasion limits in M06 Specification for Sealing Chip.

Thank you